
AI in action
Three technical case studies
show how developers are using
Azure AI to create the next
generation of apps

Azure developer guide

Table of contents 2

04 /
Technical case study:
NAVITIME (Japan)

05 /
Conclusion

06 /
What’s next?

01 /
Introduction

02 /
Technical case study:
Three (UK)

03 /
Technical case study:
Powel (Europe)

Developers around the world
are using AI to build apps that
are more useful, responsive,
and intuitive. This collection of
technical case studies highlights
three real-world examples of
how developers have used
Azure AI Services to build
applications that lower the
barriers between people
and technology.

Introduction 3

Introduction 4

Telecommunications provider Three
built an AI-driven bot with Cognitive
Services APIs that provides better
self-service for customer tasks such
as activating SIM cards, porting their
numbers, or upgrading service.

Go to Three Case Study

Municipal-services provider Powel
helps technicians working on
hazardous electrical infrastructure
stay hands-free—and safer—with
a chatbot named André, who helps
manage the work checklist while
providing useful information.

Go to Powel Case Study

Examples of Azure AI in action
Travel-app maker NAVITIME
developed a chatbot that travelers
can use to find local attractions or
look up appealing restaurants—all
while overcoming local language
barriers in anticipation of thousands
of visitors attending the Tokyo
Olympics in 2020.

Go to NAVITIME Case Study

Each technical case study shows how developers
built their apps using Azure AI, and the resulting
user experience. The studies also demonstrate
how any developer can build their own
AI-enhanced applications quickly.

Technical
Case Study:
Three

Technical Case Study: Three 5

Pedro Dias and Anders Gill
Jun 19, 2017

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

6

Technical case study

Internet provider
Three improves
customer
assistance with
self-service
chatbot

Telecommunications and Internet
service provider Three has experimented
informally with several chatbot services on
a variety of platforms but is keen to ensure
as much code reusability as possible and
reduce maintenance overhead. Its existing
webchat has proven very successful but
there are still unresolved user queries
via this existing interface. To solve this
problem, Three worked with Microsoft
to build a bot that guides users through
several self-service scenarios (that don’t
require a human agent) such as activating
a SIM card and answering general
questions with a view to moving this
quickly into production.

The final solution was a chatbot that
answers general questions at any point
during a conversation. It also provides
two self-service flows that enable users to
activate their SIM cards and to port their
numbers using the bot—without ever
having to leave the chat interface. Finally,
the bot also gave users information on
how to cancel or upgrade their contract
with Three. Underlying the whole bot, we
used Azure Application Insights to track
telemetry of all the dialogs that we hope
to later use as feedback into the bot for
conversational flow/UX improvements.

Lilian Kasem
Jun 13, 2017

Technical Case Study: Three 6

Customer
profile:

Three is a telecommunications and
Internet service provider operating in
the United Kingdom. The company
launched in March 2003 as the UK’s
first commercial video mobile network.
It provides 3G and 4G services through
its own network infrastructure.

Three wants to make life easier for
its customers by helping them get
the most out of their mobile devices,
offering real value from the services it
provides and by removing the barriers
that frustrate them.

Technical Case Study: Three 7

•	 Microsoft Bot Framework

(Node.js)

•	 Microsoft QnA Maker

•	 Language Understanding

Intelligent Service (LUIS)

•	 Web Apps feature of Azure

App Service

•	 Azure Application Insights

Key technologies

https://docs.botframework.com/en-us/node/builder/overview/
https://docs.botframework.com/en-us/node/builder/overview/
https://azure.microsoft.com/en-us/services/cognitive-services/qna-maker/
https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/
https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/app-service/web/
https://azure.microsoft.com/en-gb/services/application-insights/

Problem
statement

Solutions
and steps

For the past 18 months, Three’s existing
webchat functionality has proven very
successful but there are still unresolved
customer queries via this existing interface.
These include

•	 Cancel or upgrade a contract.
•	 New customer to Three.
•	 Purchase a new phone/contract.
•	 Report a stolen or lost device/SIM card.
•	 Add/remove services and contract add-

ons.
•	 Report no Internet service or no/poor

mobile coverage.
•	 Top up service usage.
•	 Amend user details.
•	 Account balance queries.

Prerequisites

•	 Install Visual Studio Code
•	 Install Node.js
•	 Obtain Cognitive Services keys
•	 Obtain Azure subscription

Three’s success
measurements

•	 Reduced number of webchats related
to topics for which there are adequate
online self-help resources.

•	 Increased number of visits to self-service
journeys selected to solve
customer queries.

•	 Internal validation within the bot; for
example, the number of people who say
the bot session was helpful and meant
they did not have to call/chat and so on.

•	 Ascertain effort required by Three
resources to set up, maintain, and
optimize user cases and responses from
the bot.

Technical Case Study: Three 8

https://code.visualstudio.com/
https://nodejs.org/en/
https://azure.microsoft.com/en-gb/services/cognitive-services/
https://azure.microsoft.com/en-gb/free/

Solution and architecture

The final solution in the hackfest was
a chatbot that:

•	 Answers frequently asked questions
(FAQs) using the Microsoft QnA
Maker service.

•	 Enables users to activate their Three
SIM card.
◦◦ Users fill in a form through a

conversation with the bot.
•	 Enables users to port their existing

phone number over to Three.
•	 Enables users to upgrade or cancel their

contract with Three.
•	 Tracks telemetry of all the dialogs using

Azure Application Insights, which will
later be used for feedback into the
bot for conversational
flow/UX improvements.

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

9

Technical Case Study: Three 10

Technical Case Study: Three 11

Technical Case Study: Three 12

13Technical Case Study: Three

14Technical Case Study: Three

The bot starts off with a welcome message that is triggered when a user adds a bot to their contacts
or opens a conversation with the bot. From here the user can:

•	 Use free text to ask a question (which gets handled by the QnA Maker).
◦◦ For example: “What is 3G?”

•	 Use free text to tell the bot to do something (which triggers the relevant dialog).
◦◦ For example: “I want to port my number.”

•	 Just click a button to trigger the relevant dialog.
◦◦ For example: Clicking the “Activate SIM” button.

All the dialogs within the bot incorporate telemetry (using Azure Application Insights) to track where
the users are navigating within the bot’s conversational flow—what sort of questions they’re asking
and how long it takes to complete a request.

All the technical implementation for the above can be found in the “Technical delivery” section of
this document.

Technical Case Study: Three 15

**All forms are passed through
‘commonFormIntro.js’ which:
1.	 Asks the user if they want to fill in the form

via HTML resource or fill in the form via
the bot.

2.	 If they go for the bot option they are
presented to the user before the form starts
in order that they can confirm they have all
the data needed.

** Starting a node form builder activateSIMForm.js which will recognize any entities entered
upfront by the user and use them in the form (after being revalidated by the user)

(Node)
Welcome
dialogue
with options.

Selected buttons
trigger dialouges

TextText
Entities for
form fields

Telemetry
(Node)
Relevant
dialogue
tirggered

Azure
Application
Insights

(QnAMaker)
Welcome
dialogue
with options.

LUIS
entity
recogniton

The main flows that Three wanted to build out during the hack for the initial bot solution were:

•	 Activate SIM
•	 Port a number
•	 Cancel or upgrade a contract

Technical Case Study: Three 16

Technical delivery
This section describes the solution implementation details.

Core bot capabilities

Activate SIM

This bot flow is made up of several dialogs:

•	 ActivateSIM
•	 ActivateSIMForm
•	 CommonFormIntro
•	 ActivateSIMSubmit

ActivateSIM

Users are first asked which profile best suits them—this will help the Three bot fill in the correct form
depending on the type of customer it is interacting with. This is done through a choice prompt.
Depending on the response from the user, different dialogs are called such as CommonFormIntro or
ActivateSIMForm. A lot of the following dialogs will use a similar prompt, as shown below, to guide
the users.

Technical Case Study: Three 17

Technical Case Study: Three 18

builder.Prompts.choice(
 session,
 'OK\n which of these best describes you?',
 [
 'I ordered a replacement for a missing or broken SIM',
 'I ordered a different size SIM',
 'I have just upgraded',
 'I am a new customer'
],
 {listStyle: builder.ListStyle.button}
)

Technical Case Study: Three 19

function (session, args) {
 // Save entity data to dialogData
 if (args.entityData) {
 session.dialogData.entityData = args.entityData
 }
 session.dialogData.index = args.index ? args.index : 0
 session.dialogData.form = args.form ? args.form : {}

 // Check if entityData exists
 if (session.dialogData.entityData) {
 // If the entityData exists and it possesses the property for this
question, send a confirm prompt
 if
(session.dialogData.entityData.hasOwnProperty(questions[session.dialog
Data.index].field)) {
 var prompt = questions[session.dialogData.index].prompt
 prompt = prompt.replace('{' +
questions[session.dialogData.index].field + '}',

session.dialogData.entityData[questions[session.dialogData.index].fiel
d])
 builder.Prompts.confirm(session, prompt)
 } else {
 // If the entityData exists but the property for this question
doesn't, send a text prompt
 builder.Prompts.text(session,
questions[session.dialogData.index].question)
 }
 } else {
 // If there is no entityData, proceed as normal
 builder.Prompts.text(session,
questions[session.dialogData.index].question)
 }
},
function (session, results, next) {
 // Check if the user responding via a Confirm or Text prompt
 if (results.response === true) {
 // If the confirm prompt is true then we save the entity to the
form object and increment the index
 var field = questions[session.dialogData.index++].field
 session.dialogData.form[field] =
session.dialogData.entityData[field]
 } else if (results.response === false) {
 // If the confirm prompt is false then we delete the entity from
the entityData object but we do NOT increment the index
 field = questions[session.dialogData.index].field
 delete session.dialogData.entityData[field]

ActivateSIMForm

This dialog asks users a series of questions that are required to complete the form needed to activate
their SIM. This is a useful method to easily create a form within the bot framework.

Technical Case Study: Three 20

CommonFormIntro

This dialog introduces the user to the form and describes the information required.

var requirements = ['You will need the following information: \n'];
for (var requirement in session.dialogData.formRequirements) {
 requirements.push('\n * ' +
session.dialogData.formRequirements[requirement])
}
requirements = requirements.join('');
session.send(requirements);

21Technical Case Study: Three 21

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

22Technical Case Study: Three 22

ActivateSIMSubmit

This dialog is called once the ActivateSIMForm is completed, and submits the form to Three using
request to complete a REST POST call to the Three API. The image below displays what the user sees
after successfully submitting a form.

Port a number

This dialog is very similar to ActivateSIMForm and prompts the user with questions required to
submit a form that will port the customer’s number. The submission is also made using a POST call
to Three.

var questions = [
 {field: 'mobileNumber', question: 'What is the
existing number you want to keep?'},
 {field: 'mobileNumber2', question: 'What is your
temporary new Three number?'},
 {field: 'pac', question: 'What is your PAC
number?'},
 {field: 'emailPayMonthly', question: 'What is your
email address?'},
 {field: 'fullName', question: 'What is your full
name?'},
 {field: 'dob', question: 'What is your birthday
(e.g. 01/01/1901)?'},
 {field: 'address1', question: 'What is the first
line of your address?'},
 {field: 'postcode', question: 'What is your
postcode?'}
];

function (session, args) {
 session.dialogData.index = args ? args.index : 0;
 session.dialogData.form = args ? args.form : {};

 builder.Prompts.text(session,
questions[session.dialogData.index].question);
},
function (session, results) {
 // Save users reply
 var field = questions[session.dialogData.index+
+].field
 session.dialogData.form[field] = results.response

23Technical Case Study: Three 23

var questions = [
 {field: 'mobileNumber', question: 'What is the
existing number you want to keep?'},
 {field: 'mobileNumber2', question: 'What is your
temporary new Three number?'},
 {field: 'pac', question: 'What is your PAC
number?'},
 {field: 'emailPayMonthly', question: 'What is your
email address?'},
 {field: 'fullName', question: 'What is your full
name?'},
 {field: 'dob', question: 'What is your birthday
(e.g. 01/01/1901)?'},
 {field: 'address1', question: 'What is the first
line of your address?'},
 {field: 'postcode', question: 'What is your
postcode?'}
];

function (session, args) {
 session.dialogData.index = args ? args.index : 0;
 session.dialogData.form = args ? args.form : {};

 builder.Prompts.text(session,
questions[session.dialogData.index].question);
},
function (session, results) {
 // Save users reply
 var field = questions[session.dialogData.index+
+].field
 session.dialogData.form[field] = results.response

24Technical Case Study: Three 24

Cancel or upgrade

This flow contains three dialogs:

•	 UpgradeOrCancel
•	 Cancel
•	 Upgrade

UpgradeOrCancel

This dialog simply asks users whether they want to upgrade or cancel and then calls the relevant
dialog depending on the user’s choice. This is implemented using a choice prompt.

Cancel

This asks the users, using a choice prompt, whether they want a PAC code or to know the end date
of their contract. Depending on the response, it replies with the phone number to call or the website
they need to navigate to.

25Technical Case Study: Three 25

26Technical Case Study: Three 26

Upgrade

This dialog does the same as the ‘cancel’ dialog. It asks for the type of contract and then, depending
on the answer, it gives the user the website they need in order to upgrade.

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

27Technical Case Study: Three 27

LUIS

In this project, we primarily relied on using regex to determine the user’s intent. However, we also
wanted to use the Microsoft Language Understanding Intelligent Service (LUIS) as a fallback in case
the user decided to enter free text queries. We created a LUIS model to handle the intents for the
three flows that we had built within this bot (activate SIM, port a number, cancel or upgrade).

Example regex used:

LUIS model

First, we configured the LUIS recognizer inside config.js:

We then set up trigger actions for each main flow dialog so that if the LUIS model recognized the
intent, it would trigger the required dialog.

For example, if the user says: “I want to activate my SIM card,” LUIS would pick this up as an
ActivateSIM intent, which would then trigger the start of the ActivateSIM dialog because the intent
matches the triggerAction keyword (see below). We also set the intentThreshold for the LUIS
intent trigger so that only matches above a 0.5 confidence rating would trigger the dialog.

Bot Intelligence

matches: /^Activate SIM/i
matches: /^Port my number/i
matches: /^Upgrade or cancel/i

// Import LUIS Model
var recognizer = new
builder.LuisRecognizer(process.env.LUIS_MODEL_URL);
bot.recognizer(recognizer);

.triggerAction({
 matches: 'ActivateSIM',
 intentThreshold: 0.5
 })

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

28Technical Case Study: Three 28

You can easily learn how to make your own LUIS model at the LUIS website.

https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

29Technical Case Study: Three 29

QnA Maker

Three used the Microsoft Cognitive Services QnA Maker service to answer simple customer
questions that are available online (Three FAQ Page). This was quick to implement and helped triage
simple customer queries away from the direct human assistance.

This is the QnA dialog that handles all FAQs. We call endDialog so that the bot returns to the
previous dialog the user was in when they asked the question.

module.exports = function () {
 bot.dialog('QnA', (session, results) => {
 console.log(process.env)
 var client = restify.createJsonClient('https://
westus.api.cognitive.microsoft.com')
 var options = {
 path: '/qnamaker/v2.0/knowledgebases/' + process.env.QNA_KB_ID +
'/generateAnswer',
 headers: {
 'Ocp-Apim-Subscription-Key': process.env.QNA_SUBSCRIPTION_KEY
 }
 }

 var question = {'question': results.question}

 client.post(options, question, (err, req, res, obj) => {
 if (err == null && obj.answers.length > 0) {
 for (var i in obj.answers) {
 if (parseInt(obj.answers[i].score) > 0.80) {
 session.endDialog(obj.answers[i].answer)
 } else {
 session.endDialog('Sorry, I couldn\'t find an answer in

our FAQs. Don\'t forget, you can type
\'help\'

 if you need assistance')
 }
 }
 } else {
 session.endDialog('Sorry, there was an error!')
 }
 })
 })
}

https://azure.microsoft.com/en-us/services/cognitive-services/qna-maker/
http://www.store-3.co.uk/faq.html

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

30Technical Case Study: Three 30

The QnA Maker functionality is also triggered when the user says help, quit, problem, or support
and doesn’t want the main menu:

global.bot = new builder.UniversalBot(connector, function (session) {
 session.send('I\'ll just check that for you...',
session.message.text)
 session.replaceDialog('QnA', { question: session.message.text })
});

if (results.response && results.response.entity === 'no') {

 builder.Prompts.text(session, 'Ok, why don\'t you try asking your

query here and I\'ll search our FAQs');

}

.

.

.

function (session, results, next) {

 session.replaceDialog('QnA', { question: session.message.text });

}

This dialog is then called through the UniversalBot. This means that the QnA maker is surfaced
globally throughout the bot. If the user query is not recognized by either LUIS or by one of the regex
expressions, then it will be sent to the QnA dialog.

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

31Technical Case Study: Three 31

We set up Application Insights to capture telemetry within the bot. This is used to trace the
conversational flows that the user has gone through within the bot and to also track metrics on how
long it has taken to complete a particular task.

First, we set up the Application Insights client in the config file:

Then we created a telemetry module to handle the telemetry work:

Finally, we created different telemetry objects in each dialog to trace that the user visited the dialog.
For example:

Azure Application Insights

global.telemetryModule = require('./telemetry-module')

const appInsights = require('applicationinsights')

appInsights.setup(process.env.APPINSIGHTS_INSTRUMENTATION_KEY).start()

global.appInsightsClient = appInsights.getClient()

// Store entity data in dialogData
session.dialogData.entities = data;
// Create a new telemetry module with session data
session.dialogData.telemetry =
telemetryModule.createTelemetry(session, { setDefault: false });
// Track that the user has been to the activate sim dialog
appInsightsClient.trackTrace('activateSIM',
session.dialogData.telemetry);

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

32Technical Case Study: Three 32

We can then retrieve the trace results within the Analytics portal in Azure Application Insights:

To trace how long it took for a form to be submitted, the following code was used:

// Setup a telemetry module
session.dialogData.measuredEventTelemetry =
telemetryModule.createTelemetry(session);
// Start timer. We want to track how long it takes for us to submit a
SIM activation request
session.dialogData.timerStart = process.hrtime();
.
.
.
// Submittion has been made, calculate how long it took.
var timerEnd = process.hrtime(session.dialogData.timerStart);
// Save the time it took to 'metrics' within the
measuredEventTelemetry module
session.dialogData.measuredEventTelemetry.metrics = (timerEnd[0],
timerEnd[1] / 1000000);
// Track the above metric as 'timeTaken'
appInsightsClient.trackEvent('timeTaken',
session.dialogData.measuredEventTelemetry);

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

33Technical Case Study: Three 33

Conclusion Challenges

We began this project with the aim
of building a bot that can guide users
through several self-service scenarios such
as activating a SIM card and answering
general FAQs with a view to moving this
quickly into production.

As a result, we have developed a
compelling bot that should save Three
significant time and money. It will make
the job easier for customer service agents
because they will no longer have to deal
with commonly asked simpler/general
questions, therefore freeing up their time
to deal with more specific, trickier queries.
The bot should also provide customers with
a simpler, faster method to get their queries
answered through a guided conversation
experience. Three thinks this will change
the behavior of customers and agents alike,
making them more productive.

•	 The documentation for the Node.js SDK
can be tricky to follow in its current form
and feels limited in comparison to the
C# SDK documentation. This sometimes
made it difficult to find the information
needed to put the bot together.
However, a lot of useful code samples
are available.

•	 Error feedback from LUIS and QnA
services is limited, or non-existent in the
case of QnA Maker. This made it difficult
to debug and figure out why things
didn’t work as expected.

•	 Clear guidance on development best
practices for the bot framework is still
evolving. When developing a bot that
is intended for production, it would be
useful to see the best practices for doing
certain things such as:

◦◦ Determining project structure.
◦◦ Asking the user for feedback at the

end of a dialog.
◦◦ Using LUIS versus regex.

Technical Case Study: Three 34

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

35Technical Case Study: Three 35

Learnings

Welcome messages don’t work with Slack

Unlike other channels, onConversationUpdate is not triggered when a bot is added to Slack.
Also, contactRelationUpdate is not triggered when a user is added to Slack. This means there is
currently no way to welcome a Slack user and introduce them to the bot, without them interacting
with the bot first. We did discover that the native Slack channel does deal with this. If using a web
socket, the Slack framework sends a bot_added event to let you know when a user has added a bot
to their Slack channel. However, the Microsoft Bot Framework is not using web sockets with Slack
and doesn’t get notification of this event.

The pre-built QnA Maker package is ‘semi-permanent’

If you start the QnA dialog, there is no obvious way out of this dialog flow. The user would be stuck
using the QnA service and won’t be able to continue using the bot’s other dialogs, unless you use
the global restart command. The solution is to call the QnA API directly and end the dialog after
the question is answered. This way, users can ask a question in the middle of any other dialog, get
their question answer by the QnA service, and then continue with the dialog they were in last. The
implementation for this can be found in the “Technical delivery” section of this document (under
QnA Maker) or in this sample GitHub repo.

How to implement safe words

Using regex and actions, we are able to set up global commands that users can use at any point in
the bot. This allows users to return out of a dialog when they become stuck in a conversational flow.

bot.endConversationAction('goodbye', 'Goodbye :)', { matches: /^bye/
i });
bot.beginDialogAction('home', '/start', { matches: /^home/i });
bot.beginDialogAction('help', '/help', { matches: /^help/i });

https://api.slack.com/events/bot_added
https://github.com/liliankasem/qna-prompt-sample

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

36Technical Case Study: Three 36

Using LUIS intents through triggerActions and setting the intentThreshold

Instead of using the usual method of matching LUIS intents:

We found it was a lot cleaner to match LUIS intents to dialogs through triggerActions (which you
simply add at the end of a dialog). This also led us to discover you can set a threshold for which LUIS
intents should meet before they get triggered using intentThreshold. The default is to trigger
actions even if the confidence of the match is less than 0.1.

You also can add an intentThreshold at a global level, so that it applies to all LUIS matches:

intents = new builder.IntentDialog({recognizers: [recognizer]});

intents
.matches('LUIS_Intent', '/dialog')
.matches('LUIS_Intent', '/dialog')
.onDefault(builder.DialogAction.send("I'm sorry. I didn't
understand."));

.triggerAction({
 matches: 'ActivateSIM',
 intentThreshold: 0.5
 })

intents = new builder.IntentDialog({ recognizers: [recognizer],

intentThreshold: 0.5 });

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

37Technical Case Study: Three 37

An easy and clean way to fill out forms

We developed a clean way of asking users questions to fill out a form using dialog recursion.

First, create an array of questions:

var questions = [
 {field: 'mobileNumber', question: 'What is the existing number you
want to keep?'},
 {field: 'mobileNumber2', question: 'What is your temporary new
Three number?'},
 {field: 'pac', question: 'What is your PAC number?'},
 {field: 'emailPayMonthly', question: 'What is your email
address?'},
 {field: 'fullName', question: 'What is your full name?'},
 {field: 'dob', question: 'What is your birthday (e.g.
01/01/1901)?'},
 {field: 'address1', question: 'What is the first line of your
address?'},
 {field: 'postcode', question: 'What is your postcode?'}
]

Then, loop through each question by calling the same dialog and passing in an index counter, saving
the user’s response after each question is asked:

You can find a follow
code sample of this here:
Simple Form Sample for
Node SDK

bot.dialog('FillOutForm', [
function (session, args) {
 session.dialogData.index = args ? args.index : 0
 session.dialogData.form = args ? args.form : {}

 builder.Prompts.text(session,
questions[session.dialogData.index].question)
},
function (session, results) {
 // Save users reply
 var field = questions[session.dialogData.index++].field
 session.dialogData.form[field] = results.response

 // Check for end of form
 if (session.dialogData.index >= questions.length) {
 session.privateConversationData.portForm = session.dialogData.form
 session.beginDialog('EndofForm')
 } else {
 session.replaceDialog('FillOutForm', session.dialogData)
 }
}

https://github.com/liliankasem/bot-formflow
https://github.com/liliankasem/bot-formflow

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

38Technical Case Study: Three 38

The plan for this bot is to roll it out into A/B testing in the coming weeks so that it can be
tested with real customers. Following the one-week A/B trial, the plan is to release this bot into
production within months.

Looking further forward, Three recognizes it can provide a richer experience by delivering on
the following:

•	 Rather than linking out to resources on the Three website, the user can ask the bot
questions based on the topic of the page and receive answers back based on page content.

•	 Integration with APIs—there are network-based APIs around coverage and outage
problems and reporting an issue, which could be worked into a bot experience.

•	 Posting to forms—for example, requesting a SIM or porting a number to Three can be
facilitated through the bot.

•	 Handing off to a call center/live agents.

•	 Personality and personalization—addressing the user by name and personalizing content
to suit the user.

Plans for production

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

39Technical Case Study: Three 39

Thanks all for inviting us to this
awesome week. It’s been really fun
and we have more than the bones
of a real product to take to market.
We’re all gutted to be back to real
work tomorrow!”

Thanks @microsoft-simon and all
other MS folk. We had a great time
and learned a lot!”

Lead Digital Development Manager

Justin Beasley

Digital Development Manager

Stuart Brown

“

“

40

Additional
resources

Team

Documentation:
Microsoft Bot Framework
QnA Maker
LUIS

Code:
QnA Single Prompt Sample for the Node.js SDK
Simple Form Filling Sample for the Node.js SDK

Microsoft:
Lilian Kasem – Technical Evangelist
Simon Michael – Senior Technical Evangelist
Bill Barnes – Principal Software Development Engineer

Three:
Justin Beasley – Lead Digital Development Manager
Nick Bishop – Digital Development Manager
Stuart Brown – Digital Development Manager
Thomas Barton – Scrum Master
Dimos Fountoukos – Software Developer

Technical Case Study: Three 40

http://botframework.com/
https://azure.microsoft.com/en-us/services/cognitive-services/qna-maker/
https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/
https://github.com/liliankasem/qna-prompt-sample
https://github.com/tombarton/botbuilder-forms
https://github.com/liliankasem/bot-formflow

Technical
Case Study:
Powel

Technical Case Study: Powel 41

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

42

Technical case study

Using CaaP and
André, the voice-
driven assistant
bot, to enhance
on-site inspection

During March 2017 at Microsoft offices
in Lysaker, Norway, Microsoft teamed
up with Powel to create a brand-new
bot named André. The aim of the
hackfest was to create a voice-driven
chatbot that could assist field engineers
within the space of electrical grids to
answer questions and provide reporting
capabilities during inspections to free up
their hands. The solution was built using
tools from Microsoft leveraging chatbots
and conversations as a platform
(CaaP) technologies.

Technical Case Study: Powel 42

Pedro Dias and Anders Gill
Jun 19, 2017

In this hackfest, we used the following
key technologies:

•	 Microsoft Bot Framework
•	 Microsoft Cognitive Services
•	 Language Understanding Intelligent

Services (LUIS)
•	 Xamarin.Forms
•	 Bing Speech API
•	 GitHub
•	 Visual Studio Team Services
•	 Visual Studio 2017

Additionally, the team expressed a need for
getting more hands-on experience with

•	 Test automation
•	 Continuous integration/continuous

delivery (CI/CD) scenarios

The hackfest occurred after multiple calls
in which the problem area was demystified
and ambitions for the hackfest
were scoped.

Technical Case Study: Powel 43

Powel

•	 Damian Plaza,
Software Engineer

•	 Jakub Hiszczyn,
Software Engineer

•	 Karol Stosik,
Software Engineer

•	 Maksymilian Jastrzebski,
Software Engineer

•	 Tor Hovland,
Software Engineer

•	 Simen Karlsen,
Smart Grid-Enabler

•	 Øystein Askeland,
Interaction Designer

Microsoft

•	 Pedro Dias,
Sr. Technical Evangelist

•	 Anders Gill,
Technical Evangelist

Core Team

Solution
overview
Powel envisions a future in which on-site
engineers can use natural voice as the main
driver for computer-assisted support during
inspections of power facilities. During
an inspection of an electrical station or
power line, using André, a Xamarin-based
phone application, will free the engineers
hands, providing a more fluent process
than having to fill out a paper form or
record data in a device application. Using
the capabilities of a wearable device, such
as a mobile phone, the application will
automatically understand which facility is
being inspected by obtaining the user’s
GPS location and provide the necessary
checkpoint lists and dialogs appropriate to
that facility.

The hackfest focused on two distinct
inspection targets:

•	 Power stations
•	 Power lines

The goal was to be able to design two
distinctly different conversation dialogs

with enough functionality to be tested
in the field. Based on these dialogs,
Powel would then have amassed enough
experience with CaaP to enrich André and
devise similar conversational applications
for use in other areas.

We used Xamarin.Forms, Microsoft Bot
Framework, LUIS, and Cognitive Services
to develop a bot that would allow the
engineer to talk to the Xamarin.Forms
Android app. The app uses the Google
Speech recognition engine to transform
audio into text; the text would then be sent
to LUIS to determine user intent at any
point during the conversation. Based on
the detected intent and entities, the Bot
Framework would send the appropriate
response back to the client app, which
would read the response to the engineer,
helping him stay safe by keeping
him hands-free.

Technical Case Study: Powel 44

One feature in particular that really extends the usefulness of this bot was the integration of the Bot
Framework into the Powel back-end system. We successfully integrated the bot to the systems that
would, for instance, allow engineers to extract valuable information, such as

•	 history of inspections at specific facilities
•	 specific parts prone to constant maintenance
•	 extended information about facilities
•	 the quickest route to the next critical prioritized facility that needs remediation
•	 a checklist of possible rectification methods

Technical Case Study: Powel 45

Microsoft Bot Framework and
Cognitive Services will help us in
Powel to empower our customers
by making their working day simpler,
safer, and more efficient.”

Smart Grid-Enabler, Powel
Simen Karlsen

“

Customer
profile:

Problem
statement

Powel spans Europe with a broad and
sustainable customer base and a long
history as a trusted supplier of software
solutions for cities, municipalities, counties,
the energy industry, and the contracting
sector. Powel generates around US$50M
revenue each year and was founded in
Norway in 1996. Powel has grown to be
an international corporation with staff
numbering 460 with offices in these six
countries in addition to Norway: Sweden,
Denmark, Switzerland, Chile, Turkey,
and Poland.

Powel business segments:

•	 Smart Energy
•	 Asset Performance
•	 Metering
•	 Water & Community
•	 Construction

The number-one aspect that every
company enforces is worker safety. Powel is
no exception. Some jobs, though, are more
dangerous than others. Powel has some
of the largest customers in Norway that
maintain and develop the electrical grids.
These inspections must be done once per
year for each facility. Other more in-depth
technical inspections have to be done once
every 10 years for all the components in the
electrical grid. These inspection periods are
enforced by law.

To perform an inspection, an engineer
might have to climb tall masts that can
create dangerous situations depending
on weather and other factors. These
inspections take place especially in
wintertime when frost on the ground
hinders the development of new grids.
This forces the companies to focus on
maintenance, which is also an important
job. For this reason, it would be very
inconvenient to keep a cell phone or
a notebook at hand when you could
potentially be hanging many meters
above the ground.

Technical Case Study: Powel 46

As a result, an engineer has to remember
what to check for, what potential issues
might exist, whether other maintenance
has been performed on this particular mast
or station, what types of remedies counter
any issues discovered, and so on. Based on
this data, the engineer has to travel back
to the main office to hand the information
to his colleagues or to digitize it himself.
During this transit, valuable information
and specific context gathered during the
inspection could be lost.

Powel requires a solution that allows the
engineers to stay hands-free while still
adding value to the conversation. A chatbot
triggered by a simple “Hello, André” could
potentially relieve the engineer of having to
remember all the tasks that he is to execute
during his inspection. The great thing about
such a chatbot is that it could be connected
to all other systems that are relevant
and could provide information that the
engineer needs. This was one of our goals
for the hackfest: being able to develop a
simple chatbot that can converse dialogues
to external systems and return valuable
insight that can increase efficiency during
the inspection.

An inspection could consist of anything
from assessing facilities and returning data
regarding the types of issues discovered
(presently based on a checklist) to actually
fixing the issues. Common issues range
from woodpeckers pecking the masts or
graffiti to more-serious problems like high-
voltage electrical components failing.

In summary, the chatbot will

•	 avoid security issues by staying
hands-free

•	 provide specific insight related to
particular facilities

•	 manage handover by taking notes of
current inspection so that no data is lost
during the inspection

•	 support the engineer with other
relevant information that might be
significant to know about or that he
might have forgotten about during
the inspection

Technical Case Study: Powel 47

The hackfest was initiated by Pedro, who
introduced the team to the Bot Framework,
showing examples of a working bot,
explaining features, and ensuring that the
whole team was up to speed before we
started developing.

The goal of the three-day hackfest was
to create a client app in Xamarin.Forms
for Android that could visualize the
conversation that the engineer would be
having using the Bot Framework using LUIS
and the cognitive services. We created a
user story in Visual Studio Team Services
that consisted of multiple tasks.

The user story was as follows:

As a field worker, I want to be able to
submit inspections that are OK to a bot
so that I don’t have to fill out a form
for that.

We defined features and tasks to make it
easier to distribute work across the team.
We created two repositories: one for the
ASP.NET bot application, and one for
the Xamarin.Forms application. We also
configured CI on the Bot Framework, so
that it builds and deploys to Microsoft
Azure after each commit.

Technical Case Study: Powel 48

Solution
and steps

Kanban board

Technical Case Study: Powel 49

We decided to use Android for the
visualization part because the Powel
developers all had Android devices. Besides
developing a working app, the aim was also
to educate the Powel developers on Bot
Framework and CaaP, so that they could
bring their knowledge back to the drawing
board when developing and extending
their apps for scenarios that could leverage
the Bot Framework and Cognitive Services.

The proof-of-concept (PoC) bot developed
during the hackfest would be used as a
foundation that would help Powel move
their own bot into production after
further development.

Sketch of how a field engineer usually would inspect a power station

Technical Case Study: Powel 50

The following was achieved by the end of
the hackfest:

•	 Power station inspection
◦◦ Checkpoint lists and dialogs

appropriate to a specific facility
◦◦ Selection of substations
◦◦ Selection of discrepancy type
◦◦ Registration of discrepancies with

comments, integrated with Powel
back end

The following was not implemented but
was in scope for the hackfest:

•	 Power line inspection
•	 Translation of text from Norwegian

to English
•	 Upload image from mobile app
•	 Triggering of conversation through

voice without the use of a button

Architecture diagram

Technical Case Study: Powel 51

The current PoC chatbot allows the field engineer to execute an inspection by initiating a
conversation through natural voice, ask for its capabilities, select a substation, and register a
discrepancy of a specific type with a comment. This fulfills the feedback loop by sending the data
directly to the Powel back end so that the field engineer no longer has to physically be present at the
offices to register the same information.

Technical Case Study: Powel 52

Setting up the
development
environment

To get started with the project, we had to
install and configure the following:

Visual Studio

•	 Install Visual Studio 2017 (Visual Studio
2015 also works)
Note: Ensure that Xamarin is included in your

Visual Studio installation for developing the

André app

•	 Download and install the
Bot Framework emulator

•	 Download and install the Bot template
for Visual Studio for C#

Language Understanding Intelligent
Services (LUIS)

To use LUIS, go to the LUIS homepage and
create an account. You can try it free of

charge for a generous number of messages
per day.

You now have everything you need to
create a bot application. For a complete
reference on getting started with Bot
Builder, see Bot Builder SDK for .NET.

Achievements day 1

André is a Xamarin.Forms application, so
we needed to implement native services
to have the mobile app listen and speak
through the Google speech-recognition
interface. We also started work on the chat
components for the app.

With LUIS, we had 10 intents described and
trained with utterances. We started writing
imaginary dialogs between a user and
the app to get a better understanding of
how the conversation would flow. We also
started to experiment with LUIS entities and
having intents recognize and use
these entities.

For the Bot Framework, we created a bot
application in the dev.framework.com space
and a site in Azure for the web API.

Technical
delivery

https://www.visualstudio.com/
http://emulator.botframework.com/
http://aka.ms/bf-bc-vstemplate
http://aka.ms/bf-bc-vstemplate
https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-overview

Technical Case Study: Powel 53

Setting up the bot in Azure

The Bot Framework essentially operates like
any ASP.NET app service. It has a controller
that handles the conversation messages,
so in essence, all you need to do is
the following:

•	 Create or register a new bot on the Bot
Framework developer site. This will give
you a bot handle (GUID) and an app
secret for your bot.

•	 Take a note of the app ID and password
in the same portal.

•	 Deploy the bot code to Azure
App Service.

•	 Configure your settings to include the
app ID and password so that you can
connect the web API to the
Bot Framework.

(For a complete reference to this process,
see Deploy a bot to the cloud.)

We opted to used the
CloudConfigurationManager class to read
the settings directly from App Service.

We set up CI in Visual Studio Team
Services to build and deploy the bot to
Azure on every commit. We then added
LUIS integration to start working with the
intents. At this stage, we had two
intents implemented.

https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://docs.microsoft.com/en-us/bot-framework/deploy-bot-overview

Technical Case Study: Powel 54

We finalized the direct connection through the use of the WebSockets portable class library (PCL)
but ended up going for HTTP because we could not make the PCL work. This was largely because
of the challenge of getting WebSockets to work on Android: We weren’t sure at this stage whether
we had a quick fix, so, in the interest of time, we opted out and focused our efforts on getting
everything to work.

We successfully connected the bot application to the Powel back end (an API named Condition
Monitoring) through the use of APIs.

We connected the mobile app to the bot and made it work. We also spent some time designing the
Xamarin.Forms app and making sure that the interface and user experience were good.

Achievements day 2

A note about the back-end APIs

We connected the back-end APIs of Powel through some NuGet packages internal to
Powel, and called the methods on the objects within.

Accessing these NuGet packages through Visual Studio Team Services for CI was a
breeze. Because of the sensitivity of the code, we cannot share specific code examples,
but in essence we used the APIs to get installation IDs by GPS location (longitude/
latitude) and for submitting the report data.

Technical Case Study: Powel 55

The following image is a rough initial sketch of the design interface, made by using PowerPoint
Storyboarding.

We further worked on getting NuGet packages from the Powel core APIs (specifically, the Condition
Monitoring API) to be included in the build for the bot. We worked on some conversation flow plans
for later implementation, and spent some more time on working with the intents and training LUIS
to recognize them.

https://www.visualstudio.com/en-us/docs/work/office/storyboard-your-ideas-using-powerpoint
https://www.visualstudio.com/en-us/docs/work/office/storyboard-your-ideas-using-powerpoint

Technical Case Study: Powel 56

We spent a lot of time on the PromptDialog objects because we forgot to set the dialog
implementation as [Serializable].

Other pain points we experienced:

Some issues with the .NET Framework version not matching the Bot Framework
WebApiConfig from the bot template made all parameter names in JSON camel-cased. This was not
accepted by the internal Powel API, which took some time to figure out.
The configuration initially looked like this.

We simply removed the ContractResolver line, and that seemed to fix the issue.

JsonConvert.DefaultSettings = () => new JsonSerializerSettings()

{

 ContractResolver = new CamelCasePropertyNamesContractResolver(),

 Formatting = Newtonsoft.Json.Formatting.Indented,

 NullValueHandling = NullValueHandling.Ignore,

};

We ended the day by testing the bot outside
to see how it handled background noise and
whether it would be able to capture the intent
of the field engineer. The location chosen was a
noisy environment (a highway) that could very
much be an actual inspection site where a field
engineer would have to inspect an overhead line
or a power mast. The testing succeeded with
positive results.

Technical Case Study: Powel 57

The final part of the hackfest setting up build automation for the Xamarin.Forms project using Visual
Studio Mobile Center, as well as finding possibilities for making a conversation that flows through
different dialogs.

The following diagram show the final flow of the PoC chatbot. (Sadly, we did not implement text
translation because of time constraints, but we included that part in the following image).

A field worker talks to André (the mobile app) in his natural language. The speech is transformed
into text by the Google speech recognition engine and returned to the mobile app. The app sends
the text for translation and receives fully translated text in return. The app then passes the translated
text to LUIS, which captures the intent and entities and sends the response back to the mobile app.
The mobile app sends the detected intent and entities (including the field worker ID) to the Bot
Framework, which sends a request to the Powel back end. The appropriate response is returned to
the mobile app, which translates the text into the field worker’s language and speaks the text aloud.

Achievements day 3

https://mobile.azure.com/login
https://mobile.azure.com/login

Technical Case Study: Powel 58

In the Bot Framework, a dialog works as the “brains” of the chatbot.

A dialog provides a couple of neat features that manage the state of the conversation and session
management, as well as persistence that relies on an implementation of an interface named
IDialog. This interface manages the state transition using IDialogContext. These principals have
been included in the way we worked with the bot during the hackfest and form an integral part of
the bot, enabling it to steer a conversation using the underlying stack, where it saves data to the
session object, which can be accessed throughout the course of the conversation.

An example: When LUIS acknowledges the user’s intent to be happy, the Bot Framework will proceed
to that particular method with the intent and respond with the appropriate response.

Handling dialogs

[LuisIntent("happy")]

public async Task Happy(IDialogContext context, LuisResult result)

{

 await context.PostAsync("That's so kind of you!");

 context.Wait(MessageReceived);

}

Technical Case Study: Powel 59

Another example is when LUIS acknowledges that the user wants to select a substation.

[LuisIntent("selectSubstation")]

public async Task SelectSubstation(IDialogContext context, LuisResult

result)

{

 AssetService assetService = new AssetService(new

AssetRepository());

 string extractedName;

 string message = "I'm sorry, I didn't catch the name of the

substation.";

 if (TryExtractingSubstationName(result, out extractedName))

 {

 var asset = await assetService.GetByName(extractedName);

 substationName = asset != null ? extractedName : null;

 message = asset != null ? $"The substation {substationName}

has been chosen." : $"Sorry, I didn't find a substation called

'{extractedName}'.";

 }

 await context.PostAsync(message);

 context.Wait(MessageReceived);

}

Technical Case Study: Powel 60

More-complex dialogs were also developed in which the Bot Framework communicates with the
appropriate Powel back end and lists the possible discrepancy types that the field engineer can
choose from.

[LuisIntent("getDiscrepancyType")]
public async Task SelectControlPoints(IDialogContext context,
LuisResult result)
{
 if (String.IsNullOrEmpty(substationName))
 {
 await context.PostAsync($"You need to tell what substation you
want to select.");
 context.Wait(MessageReceived);
 }
 else
 {
 DiscrepancyTypeService discrepancyService = new
DiscrepancyTypeService(new DiscrepancyTypeRepository(new
InspectionRepository(new AssetRepository()), new AssetRepository()));
 AssetService assetService = new AssetService(new
AssetRepository());
 InspectionService inspectionService = new
InspectionService(new InspectionRepository(new AssetRepository()));
 var asset = await assetService.GetByName(substationName);
 var inspection = await
inspectionService.GetNotPerformedByAssetId(asset.ObjectId);
 var discrepancyTypes = await
discrepancyService.Get(asset.ObjectId, inspection.Id);

 await context.PostAsync($"You have your discrepancy types
here:\n {JsonConvert.SerializeObject(discrepancyTypes)}");
 context.Wait(MessageReceived);
 }
}

Technical Case Study: Powel 61

The Bot Framework includes several built-in prompts that can collect input from a user. This type of
prompt was used throughout the bot project, such as when André asks the field engineer whether
he is satisfied with the inspection and wants to finish. This is based on the recognition of a LUIS
intent of assetAllGood.

In the preceding scenario, the field engineer is asked to confirm with either “Yes” or “No” (by either
tapping the appropriate button or using natural voice to respond), but many other types of data-
collection inputs can be chosen:

•	 Prompts.text  Asks the user to enter a string of text
•	 Prompts.confirm  Asks the user to confirm an action
•	 Prompts.number  Asks the user to enter a number
•	 Prompts.time  Asks the user for a time or date
•	 Prompts.choice  Asks the user to choose from a list of choices
•	 Prompts.attachment  Asks the user to upload a picture or video

Prompt dialog

[LuisIntent("assetAllGood")]
public async Task AssetAllGood(IDialogContext context, LuisResult
result)
{
 if (String.IsNullOrEmpty(substationName))
 {
 await context.PostAsync($"You need to tell what substation you
want to select.");
 context.Wait(MessageReceived);
 }
 else
 {
 PromptDialog.Confirm(context, AfterConfirmAsync, "Are you sure
that you want to finish this inspection?");
 await Task.FromResult<Object>(null);
 }
}

Technical Case Study: Powel 62

FormFlow

As we have seen, dialogs work as a powerful mechanism to guide a conversation, but they can get
complex when the puzzle has many small pieces, such as ordering a sandwich. To simplify a guided
conversation, the Bot Framework offers a much easier way of building a dialog, named FormFlow.
A FormFlow dialog guides the user through filling in the form while providing help and guidance
along the way. The form dialog was used when the field engineer needs to submit a discrepancy, for
which he has to fill in the remaining fields, including the type of discrepancy and the comment.

[Serializable]

public class DiscrepancyFormDialogBuilder

{

 public string DiscrepancyType;

 public string Comment;

 public static IForm<DiscrepancyFormDialogBuilder> BuildForm()

 {

 return new FormBuilder<DiscrepancyFormDialogBuilder>()

 .AddRemainingFields()

 .Build();

 }

 public static IFormDialog<DiscrepancyFormDialogBuilder>

Build(FormOptions options = FormOptions.PromptInStart)

 {

 // Generated a new FormDialog<T> based on IForm<BasicForm>

 return FormDialog.FromForm(BuildForm, options);

 }

};

Technical Case Study: Powel 63

Connector

The Bot Framework Connector is a component that provides a single API for the bot to communicate
across multiple client services, such as Skype, email, and Slack. Because we were already using
Slack for communication throughout the hackfest, we decided to set up integration with Slack so
that we could talk to the bot efficiently (read about the steps for configuring bot channels in the
“Configuring Channels” section of Getting Started with the Connector.)

In the following image, you can see how testing the conversation using Slack looks.

We managed to set up the Slack integration by registering the bot in the dev.botframework space
and choosing the connector type without the need of any coding.

https://docs.botframework.com/en-us/csharp/builder/sdkreference/gettingstarted.html#channels

Technical Case Study: Powel 64

Bot Communication

Direct Line is a simple REST API for connecting directly to the bot. The main purpose of this API is
to let developers connect custom agents to the bot to enable conversations. As mentioned during
earlier, we initially set out to implement the connectivity through WebSockets in the mobile app
developed in Xamarin.Forms but decided to go for HTTP because we couldn’t make the PCL work.
The following code shows a simple send task.

public async Task Send<T>(T item)

{

 var client = new HttpClient();

 client.DefaultRequestHeaders.Accept.Clear();

 client.DefaultRequestHeaders.Accept.Add(new

MediaTypeWithQualityHeaderValue("application/json"));

 client.DefaultRequestHeaders.Authorization = new

AuthenticationHeaderValue("Bearer",

_conversationStartedResponse.Token);

 var content = JsonConvert.SerializeObject(item);

 var response = await client.PostAsync($"https://

directline.botframework.com/api/conversations/

{_conversationStartedResponse.ConversationId}/messages", new

StringContent(content, Encoding.UTF8, "application/json"));

}

Other measures implemented

In the Bot Framework, you have to directly provide BotId, MicrosoftAppId, and
MicrosoftAppPassword in the web.config file to set the appropriate app settings. Because of
security issues, we did not want to do this. To provide the settings in a more secure way, we got the
settings values from CloudConfigurationManager or a local JSON file that has the bot settings.

Technical Case Study: Powel 65

public string this[string index]

{

 get

 {

 var settingValue =

CloudConfigurationManager.GetSetting(index);

 if (string.IsNullOrEmpty(settingValue))

 settingValue = GetByLocalJsonFile(index);

 return settingValue;

 }

}

private string GetByLocalJsonFile(string index)

{

 var path =

Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.UserP

rofile), "FieldWorkerBotSettings.Json");

 if (!File.Exists(path))

 return string.Empty;

 var fileContent = File.ReadAllText(path);

 if (string.IsNullOrEmpty(fileContent))

 return string.Empty;

 var json = JObject.Parse(fileContent);

 if (!json.HasValues)

 return string.Empty;

 return json[index].Value<string>();

}

We wrote the following code for the settings reader.

Technical Case Study: Powel 66

private static readonly LuisService _service;

static MessagesController()

{

 var settings = new SettingsReader();

 var appId = settings["LUIS:AppId"];

 var appKey = settings["LUIS:AppKey"];

 var model = new LuisModelAttribute(appId, appKey);

 _service = new LuisService(model);

}

This allows us to create a new LuisModelAttribute object through we pass appId and appKey in
the message controller.

Because there is too much code to display and explain in this report, you can find all the source code
for the hackfest in the GitHub repository readyforchaos/Powel-power-station-inspection-bot.

https://github.com/readyforchaos/Powel-power-station-inspection-bot

Technical Case Study: Powel 67

Agent UI

The following animated GIF shows the client mobile app on the left developed in Xamarin.Forms,
and the Powel Condition Monitoring app on the right displaying the status of a power station.

https://microsoft.github.io/techcasestudies/images/powel/CaaP/poweldemogif.gif

Technical Case Study: Powel 68

The results of the hackfest were brilliant,
and it is mesmerizing to think that the
developers from Powel went from knowing
nothing about the Bot Framework to
successfully building an integrated chatbot
that could handle conversations across
multiple systems and provide much-needed
insight for the field engineers. Powel is
dedicated to continuing the development
of the chatbot during the next few months
to include analytics and historical view of
specific parts before going live, but also to
extend the concept to areas and application
domains of Powel other than just the
power-business segment.

From a developer standpoint, all the
necessary parts are there, and integrating
them to create a solution felt almost too
easy! The bumps that we encountered were
not directly related to the Bot Framework
itself, but more specific to
Xamarin-related challenges.

The guidance provided for the Bot
Framework and LUIS have the potential
to improve, but it is sufficient to get you
started, and once you’ve got the hang of

it, you will spend the majority of your time
designing conversational flows and less
time on code.

Having all the information within the Powel
back end accessible through natural speech
within an app empowers the engineer to
make decisions based on knowledge for
which they can simply ask through
the app, leading to more accurate
inspection reports.

Being able to register discrepancies on the
fly, ask for inspection details, and obtain
other related information allows engineers
to stay paperless during inspections so that
they are less likely to forget an inspection
point, and don’t have the extra overhead of
having to return to the office to digitize the
findings after the fact.

The cool part about this hackfest is that we
managed to build something that actually
works and could be put into production
in almost no time. With LUIS and the Bot
Framework, we can now give the field
worker the support he needs when he
needs it and without the use of hands.

Conclusion

Technical Case Study: Powel 69

Going forward

We did not manage to include all the features that we scoped for the three-day hackfest. The scoped
features that were left out were the following:

•	 Translating text
•	 Uploading images from the client app
•	 Triggering André by natural voice instead of a button
•	 Figuring out the WebSockets PCL and fixing it

Powel intends to iron out these issues shortly after the hackfest to produce a working prototype to
be tested in the field as soon as possible.

Want to try out Bot Framework right now? Start here: Microsoft
Bot Framework

Want to try out LUIS and Microsoft Cognitive Services? Go to
Microsoft Cognitive Services

Source code from the hackfest can be found on GitHub:
readyforchaos/Powel-power-station-inspection-bot

Additional Resources

https://azure.microsoft.com/en-us/services/bot-service/
https://azure.microsoft.com/en-us/services/bot-service/
https://www.microsoft.com/cognitive-services
https://github.com/readyforchaos/Powel-power-station-inspection-bot
https://microsoft.github.io/techcasestudies/bot%20framework/2017/06/19/Powel.html#additional-resources

Technical
Case Study:
NAVITIME

Technical Case Study: NAVITIME 70

Pedro Dias and Anders Gill
Jun 19, 2017

Lorem ipsum dolor sit amet, consectetur
adipiscing elit

February
2018

71

Technical case study

NAVITIME
adds chatbots
to improve
the travel-app
experience

Travelers want unique experiences, but
finding local food, sightseeing spots, and
such can be challenging. With typical travel
apps, travelers can find famous restaurants
and locations but not local information.
So travelers ask local people, which can
be difficult given language barriers. For
example, many travelers know sushi as
Japanese food, but they don’t know
great local food such as shirasu-don
and motsu-yaki.

NAVITIME wants to solve the problem,
so they implemented a chatbot in the
Kamakura Travel Guide app. Users can
use the app to find information about
famous attractions. In addition, users can
communicate with the bot to find local
food and interesting places.

Masayuki Ota
Jun 28, 2017

Technical Case Study: NAVITIME 71

https://twitter.com/masota0517

Technologies used:

•	 Language Understanding Intelligent
Service (LUIS)

•	 Bing Spell Check API
•	 Bing Images Search API
•	 Custom Vision Service
•	 Text Analytics API
•	 Microsoft Bot Framework
•	 Direct Line API
•	 Azure Web Apps
•	 Azure Functions
•	 API Management

•	 Azure Cosmos DB (previously
named DocumentDB)

•	 Azure Search
•	 Azure Storage
•	 Power BI

Technical Case Study: NAVITIME 72

NAVITIME Travel
project members:

Ikuo Odanaka – Developer Manager,
NAVITIME JAPAN

Shinichi Tanabe – Senior Software
Development Engineer, NAVITIME JAPAN

Makoto Yoshihama – Software
Development Engineer, NAVITIME JAPAN

Naoya Sasaki – Software Development
Engineer, NAVITIME JAPAN

Ayako Omori (@ayako_omori) – Technical
Evangelist, Microsoft Japan

Hiroyuki Watanabe (@hiwatan007) –
Technical Evangelist, Microsoft Japan

Naoki Sato (@satonaoki) – Senior Technical
Evangelist, Microsoft Japan

Daiyu Hatakeyama (@dahatake) – Principal
Software Developer, Microsoft Japan

Masayuki Ota (@masota0517) – Technical
Evangelist, Microsoft Japan

https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/home
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/home
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-spell-check
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-image-search/search-the-web
https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service/
https://docs.microsoft.com/en-us/azure/cognitive-services/text-analytics/overview
https://dev.botframework.com/
https://docs.microsoft.com/en-us/bot-framework/rest-api/bot-framework-rest-direct-line-3-0-concepts
https://docs.microsoft.com/en-us/azure/app-service-web/app-service-web-overview
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/api-management/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/search/
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://powerbi.microsoft.com/en-us/
https://twitter.com/ayako_omori
https://twitter.com/hiwatan007
https://twitter.com/satonaoki
https://twitter.com/dahatake
https://twitter.com/masota0517

Customer profile

Problem statement

NAVITIME JAPAN is a leading provider of navigation technology and services. They offer mainly
business-to-business (B2B) and business-to-consumer (B2C) navigation applications.

For B2B, they offer navigation apps for businesspeople, consulting for transportation, and
advertising. For B2C, they offer navigation apps for traveling by train, bus, car, bicycle, or on foot and
started a travel business named NAVITIME Travel.

Language barriers can challenge even the most experienced travelers. Navitime wanted to address
this challenge before the Tokyo Olympics in 2020, when foreign travelers will visit Japan.

Technical Case Study: NAVITIME 73

http://corporate.navitime.co.jp/en/index.html

Solution and steps
Architecture

Technical Case Study: NAVITIME 74

We used the Bot Framework to implement a chatbot, and we also used the Direct Line API to
communicate with the chatbot from our iOS app. (Android and Windows apps can also use Direct
Line.) For extracting intent and entities from user input, we used LUIS. We supported spelling
correction by using the Bing Spell Check API before passing text to LUIS. After extracting intent and
entities, we call Azure Search to fetch information about local food and sightseeing spots stored
in Cosmos DB.

API
Management

Custom Vision Service

Bing Image Search API

LUIS

Text Analytics API

Cognitive
Services

Bing Spell
Check API

Azure
Storage Power BISearch

Azure
Web Apps

Azure
Functions

Azure Cosmos DB
(Data for search)

Azure Cosmos DB (Communication Log)

Direct
Line

bo
t f

ra
m

ew
or

k

Technical Case Study: NAVITIME 75

Users can freely input text, which means that sometimes LUIS can’t identify entities. For this reason,
we also use the Text Analytics API to get the key phrase. (See Detect sentiment, key phrases, and
languages in the Azure Text Analytics Quick Start Guide.) We then pass the key phrase to
Azure Search.

Users can also communicate with the bot by using photos. To support this scenario, we implemented
image recognition by using the Bing Images Search API and Custom Vision API.

DevOps and continuous improvement are also important when developing bots. For managing bot
versions, we used API Management. For storing the user-input log, we call Azure Functions and save
data in Cosmos DB. We also use Azure Search, Azure Storage, and Power BI for monitoring search
terms. We can get user demands from the text logs and brush up the bot again and again.

User experience by app and chatbot combination

We implemented the bot in an iOS app because we thought that a chatbot could extend the app’s
user experience. We show a notification message (the green window in the following image) in the
app and invite users to use the chatbot in two situations:

1.	 When a user starts the app for the first time, the notification message says, “Welcome! Feel free
to ask me for travel tips and spot information!”

2.	 If the app detects that the user has seen several recommended articles but has not selected
one, it concludes that the user can’t find suitable information and says, “Not interested in our
recommended articles? You can also…”

https://docs.microsoft.com/en-us/azure/cognitive-services/text-analytics/
https://docs.microsoft.com/en-us/azure/cognitive-services/text-analytics/

Technical Case Study: NAVITIME 76

Users can tap the chat button (fourth from left) in the menu list to start communication with the
chatbot. Users can input free text in English and Japanese, such as “I want to eat soba.” The bot
replies “Do you want…?” and recommends a restaurant. The app also shows a menu from which
users can select the next action.

Technical Case Study: NAVITIME 77

The user can tap “See More Results” to see another recommendation or tap “Try Another Keyword”
to enter different keywords. Tapping the Map button displays a map; by tapping “Go to the spot
(Get Direction)” a user can both see the map and how to get to the location. Because NAVITIME has
own routing technology, the bot redirects the user to the NAVITIME routing web app.

Technical Case Study: NAVITIME 78

The user can tap “See More Results” to see another recommendation or tap “Try Another Keyword”
to enter different keywords. Tapping the Map button displays a map; by tapping “Go to the spot
(Get Direction)” a user can both see the map and how to get to the location. Because NAVITIME has
own routing technology, the bot redirects the user to the NAVITIME routing web app.

Technical Case Study: NAVITIME 79

Travelers tend to upload photos to social network services such as Instagram and Facebook. When
other users see those photos, they want to go to that place or eat that food—but they don’t know
where it is or how to get it. Users can sent photos to our bot, which helps to recognize images and
tell users what it is and how to get it.

Technical Case Study: NAVITIME 80

This section describes how to implement
a similar bot by using Bot Framework,
Cognitive Services, and Azure.

Prerequisites

•	 Install Visual Studio and the Bot Builder
SDK by following the steps in the
tutorial Create a bot with the Bot Builder
SDK for .NET.

•	 Install the Bot Framework Emulator; see
Debug bots with the Bot Framework
Emulator for details.

•	 Create a free Azure account if you don’t
already have one.

•	 Create an app with LUIS to fit your
scenario and call it from the bot (see
LUIS action binding for web apps).

Develop a bot with Bot
Framework

After the prerequisite steps, we started to
implement our own bot by using the

MultiDialogSample code on GitHub.
Because we wanted to release an iOS app,
we used the Direct Line API.

Extract intent and
entities with LUIS and the
Bing Spell Check API

For extracting intent and entity from user
messages, we used LUIS. Because users
sometimes mistype and LUIS can’t extract
intent, we also use the Bing Spell Check API
to detect and correct typos before sending
messages to LUIS with steps below.

1.	 From the Azure portal, add the Bing
Spell Check API.

2.	 In the LUIS menu, choose My keys.
3.	 Choose External Keys and Add a new

key to add a Bing Spell Check API key
to LUIS.

4.	 Go to your LUIS app and choose Publish
App in the left menu.

5.	 At the bottom, choose the Add Key
Association button to bind the Bing
Spell Check API to LUIS.

6.	 Select Enable Bing spell checker, which
changes the endpoint URL. Use this URL
to call LUIS with the Bing Spell
Check API.

Technical
delivery

https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-quickstart
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-quickstart
https://docs.microsoft.com/en-us/bot-framework/debug-bots-emulator
https://docs.microsoft.com/en-us/bot-framework/debug-bots-emulator
https://azure.microsoft.com/en-us/free/ai/
https://docs.microsoft.com/ja-jp/azure/cognitive-services/luis/create-new-app
https://blog.botframework.com/2017/04/06/Luis-Action-Binding-Web/
https://github.com/MakeTimeWith/MultiDialogSample/tree/master/MultiDialogSample/MultiDialogSample

Technical Case Study: NAVITIME 81

Save NoSQL data in Cosmos DB

We used the fully managed NoSQL database service Cosmos DB to store NAVITIME location
information, which is formatted as JSON. We also use Cosmos DB for storing logs of communication
between users and bots.

If you want to learn how to initialize Cosmos DB and write code for it, start with the tutorial Azure
CosmosDB: Develop with the DocumentDB API in .NET. You need to import data for testing and
production by following the instructions in How to import data into Azure Cosmos DB for the
DocumentDB API.

Implement Azure Search

Although LUIS can extract intents well, users sometimes input just words, not sentences, so we also
use Azure Seach. With the following architecture, we can handle sentences and words and reply with
the correct information.

To use Azure Search, we wrote C# code like the following.

https://docs.microsoft.com/en-us/azure/cosmos-db/tutorial-develop-documentdb-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/tutorial-develop-documentdb-dotnet
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-import-data
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-import-data

Technical Case Study: NAVITIME 82

[Serializable]
public class AzureSearchService
{
 private static readonly string QueryString = $"https://
{WebConfigurationManager.AppSettings["SearchName"]}.search.windows.net
/indexes/{WebConfigurationManager.AppSettings["IndexName"]}/docs?api-
key={WebConfigurationManager.AppSettings["SearchKey"]}&api-
version=2015-02-28&";

 public async Task<SearchResult> SearchByName(string name)
 {
 using (var httpClient = new HttpClient())
 {
 string nameQuey = $"{QueryString}search={name}";
 string response = await
httpClient.GetStringAsync(nameQuey);
 return
JsonConvert.DeserializeObject<SearchResult>(response);
 }
 }

 public async Task<FacetResult> FetchFacets()
 {
 using (var httpClient = new HttpClient())
 {
 string facetQuey = $"{QueryString}facet=Era";
 string response = await
httpClient.GetStringAsync(facetQuey);
 return
JsonConvert.DeserializeObject<FacetResult>(response);
 }
 }

 public async Task<SearchResult> SearchByEra(string era)
 {
 using (var httpClient = new HttpClient())
 {

Technical Case Study: NAVITIME 83

You can use it from the Bot Framework with the following code. If you want to see a sample project,
go to ryanvolum/AzureSearchBot on GitHub. This project describes how to set up Azure Search and
Cosmos DB and how to call Azure Search from a bot.

public virtual async Task MessageRecievedAsync(IDialogContext context,
IAwaitable<IMessageActivity> result)
{
 var message = await result;
 try
 {
 SearchResult searchResult = await
searchService.SearchByName(message.Text);
 if(searchResult.value.Length != 0)
 {
 CardUtil.showHeroCard(message, searchResult);
 }
 else{
 await context.PostAsync($"No musicians by the name
{message.Text} found");
 }
 }
 catch(Exception e)
 {
 Debug.WriteLine($"Error when searching for musician:
{e.Message}");
 }
 context.Done<object>(null);
}

https://github.com/ryanvolum/AzureSearchBot/tree/master/CSharp

Technical Case Study: NAVITIME 84

Recognize images with Bing Image Search and
Custom Vision Service

We can use Bing Image Search to find similar images and “best representative queries.” For example,
if you send a photo of the temple seen earlier in this article to Bing Image Search, it replies with URLs
of similar images and “Tsuruoka Hachimangu Temple, Kamakura” as bestRepresentativeQuery.
Bing has enormous knowledge of images, and we can use it to recognize famous places and foods
with the following code.To use Azure Search, we wrote C# code like the following.

public virtual async Task MessageRecievedAsync(IDialogContext context,
IAwaitable<IMessageActivity> result)
{
 var message = await result;
 try
 {
 SearchResult searchResult = await
searchService.SearchByName(message.Text);
 if(searchResult.value.Length != 0)
 {
 CardUtil.showHeroCard(message, searchResult);
 }
 else{
 await context.PostAsync($"No musicians by the name
{message.Text} found");
 }
 }
 catch(Exception e)
 {
 Debug.WriteLine($"Error when searching for musician:
{e.Message}");
 }
 context.Done<object>(null);
}

Technical Case Study: NAVITIME 85

You can find a sample project in the GitHub repo NT-D/suggesttriplocationBot and learn about
how to post images to a bot and how to use Bing Image Search to recognize images and get
bestRepresentativeQuery. You can see more detail in the Bing Image Search API Reference.

Although Bing Image Search helps us to find famous places and foods, it’s difficult to recognize local
or lesser-known places and foods. Therefore we decided to use Custom Vision Service. To build, test,
and use this API, we started with the getting-started document Build a classifier using Custom Vision
Service machine learning.

https://github.com/NT-D/suggesttriplocationBot
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-images-api-v7-reference
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier

Technical Case Study: NAVITIME 86

Drive feedback cycles with Power BI, Cosmos DB, and
Azure Search

Because it is important to improve the bot logic with real input from users, we want to see user input
and search logs easily.

To save user searches, we call Azure Functions and store data in Cosmos DB. Azure Functions natively
support Cosmos DB bindings and can save data by using only a little code, such as the following.

#r "Newtonsoft.Json"

using System;
using System.Net;
using Newtonsoft.Json;

public static HttpResponseMessage Run(HttpRequestMessage req,
TraceWriter log, out string outputDocument)
{
 log.Info($"Webhook was triggered!");
 string jsonContent = req.Content.ReadAsStringAsync().Result;
 //Store Data in Cosmos DB
 outputDocument = jsonContent;

 dynamic data = JsonConvert.DeserializeObject(jsonContent);

 //Return HTTP Response (BadRequest or OK)
 if (data.first == null || data.last == null) {
 return req.CreateResponse(HttpStatusCode.BadRequest, new {
 error = "Please pass first/last properties in the input
object"
 });
 }

 return req.CreateResponse(HttpStatusCode.OK, new {
 greeting = $"Hello {data.first} {data.last}!"
 });
}

You can use Power BI
to access the data in
Cosmos DB by following
the information in Data
sources in Power BI
Desktop. To analyze
search logs, see
Analyzing your data with
Power BI.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-documentdb
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-data-sources/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-data-sources/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-data-sources/
https://docs.microsoft.com/en-us/azure/search/search-monitor-usage#analyzing-your-data-with-power-bi
https://docs.microsoft.com/en-us/azure/search/search-monitor-usage#analyzing-your-data-with-power-bi

Improve response
performance

We deployed the bot in the West US
region to minimize response time. (The
Bot Framework State service and LUIS are
hosted in the West US region, and the
Direct Line endpoints are in Eastern Asia,
Europe, and North America.)

At first we deployed our bot in the Japan
East region, which caused slow response

because when the bot calls LUIS and the
State service, the traffic round-trips the
Pacific Ocean again and again. If you
experience slow response, you can improve
the performance by moving your bot to the
West US region.

Technical Case Study: NAVITIME 87

End Users

Web Apps in
Japan East Region

App communicates
between Japan and
US round trip.

Bot Connector
and State Service

Connect to Bot Connector & State Service

https://blog.botframework.com/2017/02/02/Direct-Line-performance-improvements#geographic-direct-line-endpoints

Technical Case Study: NAVITIME 88

Travelers want to have an unique expeience in trip, but hard to find local food, sightseeing spot and
more with normal app. It’s also difficult to find it by communicating with local people because of
language barrier.

The chatbot is now live in the Kamakura Travel Guide app. Users can find both famous and obscure
local information by using both the app and its built-in bot.

Conclusion

It’s difficult to make NLP logic in multi-languages, but LUIS solves this
problem. LUIS is really good for getting intents in the message.”

It’s [Cosmos DB] a very cool data store. We can save NoSQL data in it
and can fetch data with SQL-like queries, so it is very easy to use. Read/
write speed is very quick; integration with Azure Seach is seamless.”

It is the smoothest project for me. PaaS such as Cosmos DB and Azure
Search can help us make new things rapidly.”

Developer Manager, NAVITIME JAPAN

Ikuo Odanaka

Senior Software Developer, NAVITIME JAPAN

Shinichi Tanabe

Senior Software Developer, NAVITIME JAPAN

Shinichi Tanabe

“

“

“

https://itunes.apple.com/us/app/kamakura-travel-guide-navitime-travel/id1192214617

As these case studies have
shown, Azure AI is making a real
difference in how developers work
and create. Ready-to-use AI tools,
advanced cloud infrastructure,
and a flexible platform offer
developers what they need to
move their apps into a new world
of exciting products, superior
customer service, and greater
business agility.

Conclusion 89

Powerful and
productive tools.

Developers don’t want to spend time
writing code for core AI features. They
need ready-to-go APIs that are easily
implemented into apps.

Data and AI for
every developer.

Developers want to augment their
applications with AI in a way that’s best for
them. To get the most of AI, they want to
build it into their apps using a wide range
of programming languages, as well as
choosing from a range of data sources.

An open and
flexible platform.

Developers are happiest when they can
choose the technology and frameworks
that are best suited for their scenarios
and skills.

Developers have big
opportunities as AI
becomes increasingly
important in a world
focused on customer
experience and as
businesses seek
new ways to gain
competitive advantage.
To make the most of
those opportunities,
developers are looking
for:

Conclusion 90

1.

2.

3.

What’s next?

We invite you to explore Azure AI Services
via these following links:

Copyright © 2018 Microsoft, Inc. All rights reserved. This content is for informational purposes only.
Microsoft makes no warranties, express or implied, with respect to the information presented here.

Learn more about Azure AI

Try Cognitive Services APIs for free

Create your Azure free account

What’s next? 91

https://azure.microsoft.com/en-us/overview/ai-platform/
https://azure.microsoft.com/en-us/try/cognitive-services/
https://azure.microsoft.com/en-us/free/ai/
https://azure.microsoft.com/en-us/overview/ai-platform/
https://azure.microsoft.com/en-us/try/cognitive-services/
https://azure.microsoft.com/en-us/free/ai/

